Huong Dan Up Rom Zenfone 5 T00F / 2023 / Top 17 # Xem Nhiều Nhất & Mới Nhất 12/2022 # Top View | Uta.edu.vn

Hướng Dẫn Up Rom Zenfone 5 Quốc Tế Mới Nhất / 2023

Hướng dẫn cài Rom Zenfone 5 quốc tế nhanh nhất

, làm sao để cài đặt rom Rom Zenfone 5 quốc tếf phiên bản quốc tế? Hiện nay thì có khá nhiều bài viết hướng dẫn cách thực hiện cách Root và Rom cho Asus Zenfone 5 nhưng đều khá khó thưc hiện và đều là những bản Rom cũ. Nên hôm nay mình sẽ hướng dẫn các bạn thực hiện việc Rom Zenfone 5 quốc tế mới nhất.

Thực hiện việc Rom Zenfone 5 quốc tế mới nhất mà không làm mất dữ liệu của người dùng.

Đây là phiên bản tiếng việt để chúng ta dễ sử dụng. Từ biểu tượng tìm kiếm các bạn gõ chữ Zenfone 5 để thực hiện Rom Zenfone 5 phiên bản quốc tế.

Sau đó các bạn kiểm tra xem thiết bị của mình đang sử dụng phiên bản nào trong các phiên bản sau T00F, T00J, T00G và đang dùng Rom nào trong các Rom: CN, CHT, TW, WW để tải Rom phù hợp.

Để kiểm tra thì các bạn và trong Setting và truy cập vào About để biết về thông tin thiết bị.

Sau khi chọn bản Rom phù hơp với Asus Zenfone 5 hoặc Xiaomi Mi4 của mình thì các bạn làm theo hướng dẫn trong hình sau:

Tải tập tin từ trang web trên về UL_ASUS_T00F_WW_1_14_40_16_user.zip và các bạn giải nén tập tin đó UL_ASUS_T00F_WW_1_14_40_16_user

Các bạn vào trong thư mục vừa giải nén và copy file UL_ASUS_T00F_WW_1_14_40_16_user.zip ở đây.

Chú ý: Trường hợp người dùng đang xài bản Rom WW thì bạn chỉ cần copy vào là xong.

Còn nếu người dùng đang sử dụng bản Rom khác thì cần đổi tên file.

Ví dụ: Asus Zenfone 5 của bạn đang sử dụng bản CN thì bạn đổi tên như sau: UL_ASUS_T00F_CN_1_14_40_16_user.zip

Hoặc bản TW thì sẽ đổi tên là: UL_ASUS_T00F_TW_1_14_40_16_user.zip

Sau khi copy và đổi tên xong thì các bạn tiến hành kết nối thiết bị của mình với máy tính qua cáp USB và sao chép file .zip vào điện thoại của mình

Đối với cách cài rom quốc tế cho Zenfone 5 này thì sẽ không làm mất dữ liệu của bạn. Nhưng nếu bạn chỉ mới mua chiếc Zenfone 5 này về và vẫn còn bỡ ngỡ với nó thì hướng dẫn sử dụng Asus Zenfone 5 sẽ giúp bạn biết rõ hơn về chiếc điện thoại này nên việc up rom cũng nhanh nhẹ hơn.

Sau khi cài Rom Zenfone 5 quốc tế thì thiết bị của bạn sẽ chạy rất tốt mà không phát sinh lỗi khi sử dụng rom Trung Quốc. Không những thế máy còn có thể tối ưu hóa và tiết kiệm pin.

Up Rom Quốc Tế Cho Zenfone Xách Tay / 2023

Đối với các phiên bản Zenfone Đài Loan và Trung Quốc là các hãng xách tay, nó thường được sử dụng trước ở Việt Nam so với các phiên bản quốc tế do nhu cầu sử dụng của người Việt là hàng xách tay sẽ rẻ hơn một chút.

Hướng dẫn up Rom cho Zenfone 4, 5, 6 nhanh nhất Cách cài đặt CH Play cho Zenfone xách tay iPhone quốc tế có tiếng Việt không? Xperia Z5 xách tay có giá 15,5 triệu đồng Hướng dẫn up Firmware 2.21 tiếng Việt mới nhất cho Zenfone 5 và 6

Tuy nhiên đối với Zenfone hàng xách tay của Đài Loan (TW) thì vẫn có Google Play nhưng bản của Trung Quốc (CN) thì hoàn toàn không có Google Play, sau đây các bạn đang xài các phiên bản xách tay có thể up rom để có Google Play sư dụng như bản quốc tế.

1 . Link Download Rom gốc quốc tế.

– Bản T00F world – Asus Zenfone 5 A500

– Bản T00J world – Asus Zenfone 5 A500

– Bản dành cho Zenfone 6

2 . Hướng dẫn up rom quốc tế.

Bước 1 : Tắt máy, sau đó vào recovery :

Bước 2 : Download bản ROM quốc tế ở trên

Giải nén file: UL-ASUS_T00F-WW-1.12.40.9-user đổi tên thành: (Bản T00J làm tương tự)

– Bản đài loan (TW): UL-ASUS_T00F-TW-2014.3.27.935705-us er

– Bản trung quốc (CN): UL-ASUS_T00F-CN-10000.11.40.1-user

– Zenfone 6: UL-ASUS_T00G-CN-2014.5.1.65432-user.zip

Bước 3 : Cắm cáp vào và chép file đã đổi tên ở bước 2 vào bộ nhớ trong (Internal Storage)

Bước 4 : Rút cáp, máy sẽ tự báo có bản Update, chọn Update rồi chờ khoảng 2-3 phút. máy tự động khởi động lại hoàn tất quá trình up rom.

Bước 5 : Các bạn có thể lặp lại bước 1 một lần nữa.

Như vậy chúng tôi đã hướng dẫn các bạn up rom quốc tế cho các máy Zenfone hàng xách tay, các bạn thích vọc hãy làm theo các bước trên để có bản rom như những máy quốc tế với Google Play chuẩn.

https://9mobi.vn/up-rom-quoc-te-cho-zenfone-xach-tay-1054n.aspx

Huong Dan Su Dung Eviews 5.1 / 2023

Published on

4. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 4 liệu thời gian; số quan sát đối với loại dữ liệu chéo; và tần suất, ngày bắt đầu, ngày kết thúc, và số quan sát tại mỗi thời điểm đối với loại dữ liệu bảng.

6. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 6 mong muốn (ví dụ biến “employment” đổi thàng X2). Ngoài ra, ta cũng có thể mô tả đặc điểm của biến đó (ví dụ đơn vị tính, …). Cuối cùng ta chọn Finish.

8. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 8 Nội dung cửa sổ tập tin của Eviews Khi mở một tập tin làm việc của Eviews ta sẽ thấy một cửa sổ như sau: Nguồn: Eviews 5 Users Guide, pp.52 Ta có thể trình bày dạng tóm tắt nội dung của tập tin Eviews bằng cách chọn View/Statistics và quay trở về thư mục gốc bằng cách chọn View/Workfile Directory. Sau khi đã tạo một tập tin Eviews, ta nên lưu lại dưới định dạng Eviews bằng cách chọn File/Save As … hay File/Save … Eviews sẽ hiện ra hộp thoại Saveas, ta đặt tên cho tập tin đó, và chọn mức độ chính xác trong hộp thoại Workfile Save. TRÌNH BÀY DỮ LIỆU Khi đã có sẵn tập tin Eviews, ta có thể sử dụng các công cụ Eviews cơ bản để phân tích dữ liệu của từng chuỗi (sau đây cũng được gọi là biến1) hay một nhóm các biến theo nhiều cách khác nhau. Trình bày dữ liệu của một chuỗi2 Để xem nội dung của một biến nào đó, ví dụ M13 trong tập tin Chapter2.3.wf1, ta nhấp đúp vào biểu tượng biến M1 trong cửa sổ của tập tin này, hay chọn Quick/Show … trong thực đơn chính, nhập M1 và chọn OK. Eviews sẽ mở biến M1 và thể hiện dưới một dạng bảng tính mặc định. 1 Variable Series statistics 3 ??? 2

12. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 12 1600 2000 1200 1500 800 1000 400 0 500 0 55 60 65 70 75 GDP 80 85 90 95 M1 * Thống kê mô tả Ta có thể đồng thời tạo ra một bảng thống kê mô tả nhiều biến khác nhau bằng cách chọn View/Descriptive Stats/Individual Samples hay Quick/Group Statistics/Descriptive Statistics/Individual Samples.

16. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 16 * Xem đối tượng1 Một cách khác để chọn và mở đối tượng là chọn Show ở thanh công cụ2 hay chọn Quick/Show … từ thực đơn và nhập tên đối tượng vào hộp thoại. Nút Show cũng có thể được sử dụng để hiển thị các phương trình của các chuỗi. Cửa sổ đối tượng Cửa sổ đối tượng là cửa sổ được hiển thị khi ta mở một đối tượng hay một chứa đối tượng. Một cửa sổ đối tượng sẽ chứa hoặc một hiển thị của đối tượng hoặc các kết quả của một thủ tục của đối tượng. Eviews cho phép mở cùng lúc nhiều cửa sổ đối tượng. * Các thành phần của một cửa sổ đối tượng Đây là minh họa cửa sổ phương trình từ kết quả hồi qui theo phương pháp OLS. Một số điểm cần lưu ý như sau: Thứ nhất, đây là một cửa sổ chuẩn vì ta có thể đóng, thay đổi kích cở, phóng to, thu nhỏ, và kéo lên xuống hay qua lại. Khi có nhiều cửa sổ khác đang mở, nếu ta muốn cửa sổ nào ở chế độ làm việc thì ta chỉ cần nhấp vào thanh tiêu đề hay bất kỳ đâu trong cửa số đó. Lưu ý, cửa sổ đang ở chế độ làm việc được biểu hiện với thanh tiêu đề có màu đậm. Thứ hai, thanh tiêu đề của cửa sổ đối tượng cho biết loại đối tượng, tên đối tượng, và tập tin chứa. Nếu đối tượng cũng chính là đối tượng chứa thì thông tin chứa được thay bằng thông tin thư mục.Thứ ba, trên đỉnh cửa sổ có một thanh công cụ chứa một số nút giúp ta dễ dàng làm việc. 1 2 Show Toolbar

17. 17 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình * Các thực đơn và thanh công cụ của đối tượng Làm việc với đối tượng * Đặt tên và tên nhãn của đối tượng Các đối tượng có thể được đặt tên hoặc không được đặt tên. Khi ta đặt tên cho đối tượng, thì tên đối tượng sẽ xuất hiện trong thư mục của tập tin Eviews, và đối tượng sẽ được lưu như một phần của tập tin khi tập tin được lưu. Ta phải đặt tên đối tượng nếu muốn lưu lại các kết quả của đối tượng. Nếu ta không đặt tên, đối tượng sẽ được gọi là “UNTITLED”. Các đối tượng không được đặt tên sẽ không được lưu cùng với tập tin, nên chúng sẽ bị xóa khi đóng tập tin. Để đổi tên đối tượng, trước hết phải mở cửa sổ đối tượng, sau đón nhấp vào nút Name trên cửa sổ đối tượng và nhập tên (và tên nhãn) vào. Nếu có đặt tên nhãn thì tên nhãn sẽ xuất hiện trong các bảng biểu đồ thị, nếu không Eviews sẽ dùng tên đối tượng. Lưu ý, đây là nhóm đã mặc định và không được sử dụng cho tên đối tượng: ABS, ACOS, AND, AR, ASIN, C, CON, CNORM, COEF, COS, D, DLOG, DNORM, ELSE, ENDIF, EXP, LOG, LOGIT, LPT1, LPT2, MA, NA, NOT, NRND, OR, PDL, RESID, RND, SAR, SIN, SMA, SQR, và THEN. * Copy và dán đối tượng Có hai phương pháp tạo ra bản sao các thông tin chứa trong đối tượng: Copy và Freeze.

20. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 20 Các hàm chuỗi Hầu hết các hàm trong Eviews đều bắt đầu bằng ký hiệu @, ví dụ @mean(y) nghĩa là lấy giá trị trung bình của chuỗi y cho toàn bộ mẫu hiện hành. Có ba nhóm hàm chuỗi hay sử dụng trong Eviews: hàm toán (mathematical functions), hàm tập tin Eviews (workfile functions), và hàm dãy số (string functions). Để tìm hiểu thêm về các hàm này, ta có thể tham khảo ở Help/Command & Programming Reference, hoặc Help/Quick Help Reference, ở đây chỉ trình bày một số hàm hay sử dụng trong cuốn sách này. Hàm giá trị tuyệt đối: @abs(x), abs(x) Hàm mũ cơ số e hay antilog (ex): @exp(x), exp(x) Hàm nghịch đảo (1/x): @inv(x) Hàm log tự nhiên (ln(x) hay loge(x)): @log(x), log(x) Hàm căn bậc hai: @sqrt(x), sqr(x) Hàm xu thế: @trend(base date), trong đó, base date chỉ thời điểm bắt đầu của chuỗi xu thế T (tại đó T = 0) Biến trễ, tới, sai phân1 và mùa vụ Khi làm việc với dữ liệu chuỗi thời gian, ta thường xử lý dữ liệu bằng cách chuyển hóa sang dạng trễ, tới, sai phân, hoặc tạo thêm các biến giả mùa vụ. * Biến trễ, tới và sai phân Biến trễ một giai đoạn (xt-1): x(-1) Biến trễ k giai đoạn (xt-k): x(-k) Biến tới một giai đoại (xt+1): x(1) Biến tới k giai đoạn (xt+k): x(k) Sai phân bậc một (∆x = xt – xt-1): d(x) Sai phân bậc k (∆kx = xt – xt-k): d(x,k) Sai phân bậc một của biến trễ dạng log tự nhiên: dlog(x) Trung bình trượt k giai đoạn: @movav(x,k) Ngoài ra, ta có thể đồng thời kết hợp nhiều toán tử với nhau, ví dụ dlog(x), dlog(x,4), … * Biến giả mùa vụ Tạo ra một biến giả theo quí có giá trị là 1 đối với quí 2 và giá trị là 0 đối với các quí khác: @seas(2) Tạo ra một biến giả theo tháng có giá trị là 1 đối với tháng 2 và giá trị 0 đối với các tháng khác: @month(2) 1 Lead: tới, Lag: trễ, và Difference: Sai phân

22. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 22 JB lớn hơn giá trị quan sát (giá trị phê phán) dưới giả thiết không (H0). Giá trị xác suất càng nhỏ thì khả năng bác bỏ giả thiết H0 càng cao. * Thống kê theo nhóm Thống kê theo nhóm cho phép ta tính các thống kê mô tả của một chuỗi theo các phân nhóm khác nhau trong mẫu phân tích. Nếu ta chọn View/Descriptive Statistics/Stats by Classification …, thì một hộp thoại sau đây sẽ xuất hiện: Các lựa chọn ở Stattistics bên trái cho phép ta chọn các tiêu chí thống kê muốn tính toán. Trong ô Series/Group for classify ta nhập tên chuỗi hay nhóm để xác định các phân nhóm. Nếu ta chọn nhiều chuỗi thì mỗi chuỗi cách nhau một khoảng trắng. Ở mục Output Layout, nếu ta chọn các Margins thì bảng kết quả có trình bày thống kê của tất các các quan sát trong cùng một nhóm cũng như của toàn bộ mẫu phân tích. Ví dụ, sử dụng file chúng tôi để thống kê mô tả biến LWAGE (log tự nhiên1 của lương tuần) theo hai biến CONSTRUC (= 1 nếu làm việc trong ngành xây dựng và = 0 nếu làm trong các ngành khác) và MARRIED (= 1 nếu đã có gia đình và = 0 nếu chưa có gia đình). Kết quả thống kê biến LWAGE với bốn tiêu chí thống kê là trung bình, trung vị, lệch chuẩn, và số quan sát được trình bày như bảng bên cạnh. Nhìn vào bảng kết quả ta có thể so sánh có sự khác biệt giữa các nhóm hay không. Tuy nhiên, để chắc chắn sự khác biệt đó có ý nghĩa về mặt thống kê hay không, ta cần dựa vào loại kiểm định thống kê thích hợp. 1 Log tự nhiên được ký hiệu là ln, nhưng toán tử trong Eviews là log

24. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 24 χ2 = ( N − 1)s 2 σ2 (2.4) Với giả thiết H0 và giả định rằng X có phân phối chuẩn, thì thống kê chi bình phương sẽ theo phân phối chi bình phương với N-1 bậc tự do. * Kiểm định ngang bằng theo nhóm Đây là các kiểm định xem các giá trị trung bình, phương sai và trung vị ở các phân nhóm trong cùng một chuỗi có bằng nhau hay không. Khi chọn View/Tests for Descriptive Stats/Equality Tests by Classification … sẽ thấy xuất hiện một hộp thoại như hình bên. Trước tiên ta phải chọn loại kiểm định: trung bình, phương sai, hay trung vị, sau đó chọn các phân nhóm muốn so sánh. Xác định giả thiết: Đối với kiểm định trung bình H0: Trung bình của các nhóm bằng nhau H1: Trung bình của các nhóm khác nhau Đối với kiểm định phương sai H0: Phương sai của các nhóm bằng nhau H1: Phương sai của các nhóm khác nhau Để quyết định, ta so sánh giá trị thống kê F1 tính toán với giá trị thống kê F quan sát (phê phán). Nếu giá trị thống kê F tính toán lớn hơn giá trị thống kê F quan sát tại một mức ý nghĩa nhất định, ta bác bỏ giả thiết H0 và ngược lại. Lập bảng tần suất một chiều Để lập bảng tần suất một chiều ta chọn View/One-Way Tabulation … và sẽ xuất hiện một hộp thoại như sau. Biểu đồ tự tương quan Mục đích của biểu đồ tự tương quan là giúp ta kiểm định xem một chuỗi thời gian dừng hay không dừng2. Trong các mô hình dự báo chuỗi thời gian và dự báo bằng phương pháp hồi qui các chuỗi thời gian, thì việc các chuỗi thời gian dừng hay không 1 Sẽ được giải thích ở chương 4 và 5 Đây là một nội dung rất quan trọng khi phân tích chuỗi thời gian và đặc biệt có ý nghĩa rất lớn trong việc lựa chọn mô hình dự báo thích hợp trong các phương pháp dự báo định lượng với dữ liệu chuỗi thời gian. Nội dung này sẽ được trình bày chi tiết ở chương 14. 2

26. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 26 Trong Eviews, ta lập biểu đồ tự tương quan bằng cách chọn View/Correlogram … , xác định biểu đồ tự tương quan của chuỗi gốc hay chuỗi sai phân bậc một và bậc hai, và cuối cùng là xác định độ trễ k. Ví dụ, chuỗi GDP trong chúng tôi có biểu đồ tự tương quan như sau: Dựa vào biểu đồ tự tương quan để xác định một chuỗi thời gian dừng hay không như sau. Có thể tóm tắt ý tưởng chính như sau. Nếu hệ số tự tương quan đầu tiên khác không nhưng các hệ số tự tương quan tiếp theo bằng không một cách có ý nghĩa thống kê, thì đó là một chuỗi dừng. Nếu một số hệ số tự tương quan khác không một cách có ý nghĩa thống kê thì đó là một chuỗi không dừng. Kiểm định nghiệm đơn vị Kiểm định nghiệm đơn vị là một kiểm định được sử dụng khá phổ biến để kiểm định một chuỗi thời gian dừng hay không dừng. Nội dung chi tiết phần kiểm định nghiệm đơn vị sẽ được trình bày ở chương 14 về các mô hình hồi qui chuỗi thời gian. Tuy nhiên, để hiểu qui trình kiểm định nghiệm đơn vị trên Eviews, ta nên xem qua một số ý tưởng cơ bản về mặt lý thuyết. Trước hết, cần lưu ý rằng có nhiều khái niệm chưa được học nên người đọc không nhất thiết phải hiểu ngay nội dung kiểm định nghiệm đơn vị ở chương này. Giả sử ta có phương trình hồi qui tự tương quan như sau: Yt = ρYt-1 + ut (-1 ≤ ρ ≤ 1) (2.7) Ta có các giả thiết: H0: ρ = 1 (Yt là chuỗi không dừng) H1: ρ < 1 (Yt là chuỗi dừng) Phương trình (2.7) tương đương với phương trình (2.8) sau đây: Yt – Yt-1 = ρYt-1 – Yt-1 + ut = (ρ – 1)Yt-1 + ut ∆Yt = δYt-1 + ut Như vậy các giả thiết ở trên có thể được viết lại như sau: H0: δ = 0 (Yt là chuỗi không dừng) (2.8)

27. 27 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình H1: δ < 0 (Yt là chuỗi dừng) Dickey và Fuller cho rằng giá trị t ước lượng của hệ số Yt-1 sẽ theo phân phối xác suất τ (tau statistic, τ = giá trị δ ước lượng/sai số của hệ số δ). Kiểm định thống kê τ còn được gọi là kiểm định Dickey – Fuller (DF). Kiểm định DF được ước lượng với 3 hình thức: * Khi Yt là một bước ngẫu nhiên không có hằng số: ∆Yt = δYt-1 + ut (2.9) * Khi Yt là một bước ngẫu nhiên có hằng số: ∆Yt = β1 + δYt-1 + ut (2.10) * Khi Yt là một bước ngẫu nhiên với hằng số xoay quanh một đường xu thế ngẫu nhiên: ∆Yt = β1 + β2TIME + δYt-1 + ut (2.11) Để kiểm định H0 ta so sánh giá trị thống kê τ tính toán với giá trị thống kê τ tra bảng DF (các phần mềm kinh tế lượng đều cung cấp giá trị thống kê τ). Tuy nhiên, do có thể có hiện tượng tương quan chuỗi giữa các ut do thiếu biến, nên người ta thường sử dụng kiểm định DF mở rộng là ADF (Augmented Dickey – Fuller Test). Kiểm định này được thực hiện bằng cách đưa thêm vào phương trình (2.11) các biến trễ của sai phân biến phụ thuộc ∆Yt: ∆Yt = β1 + β2TIME + δYt-1 + αi Σ∆Yt-i + εt (2.12) Để tiến hành kiểm định nghiệm đơn vị trên Eviews ta chọn View/Unit Root Test …, sẽ xuất hiện hộp thoại Unit Root Test. Ở lựa chọn Test for unit root in, chọn level nếu muốn kiểm định chuỗi gốc có phải là một chưỡi dừng hay không, chọn 1st difference nếu muốn kiểm định chuỗi sai phân bậc một có phải là một chuỗi dừng hay không. Ở lựa chọn Include in test equation, chọn intercept nếu dùng phương trình (2.10), chọn trend and intercept nếu dùng phương trình (2.11), chọn None nếu dùng phương trình (2.9), chọn trend and intercept và xác định độ trễ ở lựa chọn Lag length nếu dùng phương trình (2.12).

28. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 28 PHÂN TÍCH NHÓM Khi mở một nhóm, nếu chọn View ta thấy xuất hiện thực đơn dạng drop-down như hình bên cạnh. Block thứ nhất cung cấp các cách khác nhau để mô tả dữ liệu trong nhóm. Block thứ hai trình bày các thống kê cơ bản. Block thứ ba chuyên về các thống kê của chuỗi thời gian. Block thứ tư là tên nhãn nhằm cung cấp các thông tin về nhóm. Trong phần này ta chỉ xem xét một số nội dung quan trọng thường được sử dụng trong kinh tế lượng. Thống kê mô tả Trong thống kê mô tả ta thấy có ba loại như sau: Common Sample, Individual Sample, và Boxplots. Common Sample chỉ tính các thống kê các quan sát có đầy đủ giá trị ở tất cả các chuỗi dữ liệu trong nhóm. Individual Sample tính các thống kê của các quan sát có đầy đủ giá trị ở mỗi chuỗi dữ liệu. Kiểm định đồng liên kết1 Chúng ta sẽ được biết ở chương 14 rằng khi hồi qui các chuỗi thời gian không dừng thường dẫn đến “kết quả hồi qui giả mạo”2. Tuy nhiên, Engle và Granger3 (1987) cho rằng nếu kết hợp tuyến tính của các chuỗi thời gian không dừng có thể là một chuỗi dừng và các chuỗi thời gian không dừng đó được cho là đồng liên kết. Kết hợp tuyến tính dừng được gọi là phương trình đồng liên kết và có thể được giải hích như mối quan hệ cân bằng dài hạn giữa các biến. Nói cách khác, nếu phần dư trong mô hình hồi qui giữa các chuỗi thời gian không dừng là một chuỗi dừng, thì kết quả hồi qui là thực và thể hiên mối quan hệ cân bằng dài hạn giữa các biến trong mô hình. Mục đích của kiểm định đồng liên kết là xác định xem một nhóm các chuỗi không dừng có đồng liên kết hay không. Có hai cách kiểm định. * Kiểm định nghiệm đơn vị phần dư Giả sử GDP và M1 là hai chuỗi thời gian không dừng và ta có mô hình hồi qui như sau: GDPt = β1 + β2M1t + ut (2.13) Nếu phần dư ut là một chuỗi dừng thì kết quả hồi qui giữa GDP và M1 là “thực” và ta vẫn sử dụng một cách bình thường. Nói cách khác, GDP và M1 có quan hệ đồng liên kết và β2 được gọi là hệ số hồi qui đồng liên kết. Các bước thực hiện trên Eviews như sau: 1) Ước lượng mô hình GDPt = β1 + β2M1t + ut 1 Cointegration test Spurious regression 3 Đoạt giải Nobel kinh tế năm 2003 2

29. 29 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình 2) Kiểm định nghiệm đơn vị chuỗi ut * Kiểm định đồng liên kết dựa trên phương pháp VAR của Johasen Eviews thực hiện kiểm định đồng liên kết trên cơ sở phương pháp luận VAR của Johasen (1991, 1995a). Lưu ý, kiểm định này chỉ có hiệu lực khi ta đang xét các chuỗi thời gian không dừng. Giả sử ta muốn kiểm định đồng liên kết giữa GDP và M1 trong chúng tôi theo phương pháp luận của Johasen, ta chọn View/Cointegration Test … sẽ thấy xuất hiện một hộp thoại như sau: Ở lựa chọn Deterministic trend in data có năm giả định về các chuỗi thời gian đang xem xét. Như sẽ được trình bày ở chương 14, một chuỗi thời gian có thể dừng sai phân hoặc dừng xu thế, trong đó có thể có xu thế xác định và xu thế ngẫu nhiên. Tương tự, các phương trình đồng liên kết có thể có hệ số cắt và xu thế xác định. Trên thực tế, trường hợp 1 và 5 ít khi được sử dụng. Nếu ta không chắc chắn về các giả định xi thế, ta nên chọn trường hợp 6. Nếu mô hình có các biến ngoại sinh thì ta đưa vào ô exog variables. Ngoài ra, ta có thể xác định độ trể của biến phụ thuộc trong mô hình ở ô Lag intervals và mức ý nghĩa ở ô MHM. Kết quả kiểm định mối quan hệ đồng liên kết giữa GDP và M1 như bảng bên

31. 31 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình Lưu ý, các độ trễ của X và Y có thể khác nhau và có thể được xác định bằng một số tiêu chí thống kê khác nhau. XÂY DỰNG HÀM KINH TẾ LƯỢNG TRÊN EVIEWS Trong tài liệu này ta chỉ xét phân tích hồi qui đơn phương trình. Phần này trình bày các kỹ thuật phân tích hồi qui cơ bản như xác định và ước lượng một mô hình hồi qui, kiểm định giả thiết, và sử dụng kết quả ước lượng cho các mục đích dự báo. ĐỐI TƯỢNG PHƯƠNG TRÌNH Ước lượng hồi qui đơn phương trình trên Eviews được thực hiện bằng cách sử dụng đối tượng phương trình. Để tạo ra một đối tượng phương trình ta chọn Object/New Object … /Equation hay Quick/Estimate Equation … từ thực đơn chính, hay đơn giản chỉ cần đánh equation trong cửa sổ lệnh. Kế tiếp, ta sẽ xác định dạng phương trình trong hộp soạn thảo Specification của hộp thoại Equation Estimation và chọn phương pháp ước lượng ở ô Method. Các kết quả ước lượng được lưu trữ như một phần của đối tượng phương trình. Xác định phương trình hồi qui Khi tạo ra một đối tượng phương trình sẽ thấy xuất hiện một hộp thoại Equation Estimation và ta cần xác định ba việc sau: dạng phương trình, phương pháp ước lượng, và mẫu được sử dụng để ước lượng. Trong hộp soạn thảo dạng phương trình ta nhập các biến phụ thuộc và giải thích theo thứ tự từ trái qua phải và lưu ý xác định dạng hàm. Có hai cách xác định dạng phương trình ước lượng: liệt kê các biến và công thức. Phương pháp liệt kê dễ hơn nhưng chỉ có thể sử dụng giới hạn ở các dạng mô hình tuyến tính. Phương pháp công thức tổng quát hơn và phải được sử dụng để xác định các dạng mô hình phi tuyến và các mô hình có ràng buộc tham số. Xác định phương trình theo phương pháp liệt kê Cách đơn giản nhất để xác định một phương trình tuyến tính là liệt kê các biến trong phương trình. Trước hết, nhập tên biến phụ thuộc hay công thức của biến phụ thuộc,

32. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 32 sau đó nhập tên các biến giải thích. Ví dụ, sử dụng chúng tôi để xác định phương trình hồi qui GDP theo cung tiền M1, ta nhập vào hộp thoại soạn thảo dạng phương trình như sau: GDP c M1 (2.17) Lưu ý có hiện diện của chuỗi C trong danh sách các biến giải thích. Đây là một chuỗi mặc định sẵn trong Eviews được dùng để xác định hằng số trong phương trình hồi qui. Eviews không tự động đưa hằng số vào phương trình hồi qui vì tùy thuộc vào mô hình có hệ số cắt hay không nên ta phải đưa vào khi xác định phương trình hồi qui. C là một đối tượng đã được xác định trước trong bất kỳ một tập tin Eview nào. Đây là một vectơ hệ số mặc định – khi ta xác định phương trình bằng cách liệt kê tên các biến, Eviews sẽ lưu giữ các hệ số ước lượng trong vectơ này theo thứ tự xuất hiện trong danh sách các biến. Trong ví dụ trên, hằng số sẽ được lưu trong C(1) và hệ số của M1 sẽ được lưu trong C(2). Nếu mô hình có biến trễ một giai đoạn của biến phụ thuộc thì ta liệt kê các biết trong hộp thoại soạn thảo này như sau: GDP GDP(-1) c M1 (2.18) Như vậy hệ số của biến trễ biến GDP là C(1), hệ số của hằng số là C(2), và hệ số của M1 là C(3). Nếu mô hình có nhiền biến trễ liên tục của biến GDP thì thay vì phải nhập từng biến trễ GDP(-1) GDP(-2) GDP(-3) GDP(-4), Eviews cho phép thực hiện như sau: GDP GDP(1 to 4) c M1 (2.19) Tuy nhiên, nếu ta không đưa số 1 và dấu ngoặc đơn thì Eviews sẽ hiểu đó là số 0. Ví dụ: GDP c M1(to 2) M1(-4) (2.20) Thì Eviews sẽ hiểu ta hồi qui GDP theo hằng số C, M1, M1(-1), M1(-2), và M1(-4). Ngoài ra, ta cũng có thể đưa các chuỗi điều chỉnh vào nhóm các biến giải thích. Ví dụ ta hồi qui GDP theo hằng số, biến trễ của GDP, và biến trung bình di động hai giai đoạn của M1 như sau: GDP GDP(-1) c ((M1+M1(-1))/2) (2.21) Xác định phương trình theo phương pháp công thức Một công thức phương trình trong Eviews là một biểu thức toán về các biến và hệ số. Để xác định một phương trình bằng công thức, đơn giản là ta nhập biểu thức vào hộp thoại soạn thảo. Ví dụ, hồi qui mô hình dạng log tự nhiên như sau: log(GDP) c log(GDP(-1)) log(M1) (2.22) Hai lý do chủ yếu ta phải sử dụng phương pháp công thức này là ước lượng các mô hình ràng buộc và phi tuyến.

33. 33 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình Ước lượng một phương hồi qui Phương pháp ước lượng Sau khi đã xác định phương trình, ta cần chọn phương pháp ước lượng bằng cách nhấp vào Method và sẽ thấy xuất hiện một hộp thoại dạng drop-down liệt kê các phương pháp ước lượng. Phương pháp sử dụng phổ biến nhất đối với hồi qui đơn phương trình là phương pháp bình phương bé nhất1. Trong chương trình kinh tế lượng căn bản của cuốn sách này, ta chỉ sử dụng hai phương pháp là LS – Least Squares2 và BINARY – Binary choice3. Hai phương pháp này sẽ được trình bày chi tiết vào các chương sau. Mẫu ước lượng Ta nên xác định mẫu sử dụng cho việc ước lượng mô hình. Theo mặc định, Eviews đưa ra mẫu của tập tin Eviews hiện hành, nhưng ta có thể thay đổi mẫu theo mục đích ước lượng bằng cách nhập vào hộp thoại Sample. Thay đổi mẫu ở đây không ảnh hưởng gì đến mẫu của tập tin Eviews hiện hành. Nếu có quan sát không có giá trị4, Eviews tạm thời điều chỉnh mẫu ước lượng để loại bỏ các quan sát đó ra khỏi mẫu phân tích. Ngoài ra, nếu trong mô hình có các biến trễ hay biến điều chỉnh thì Eviews cũng điều chỉnh số mẫu ước lượng. 1 Least squares/Ordinary least squares Kể cả phương pháp WLS (Weighted least squares) và GLS (Generalized least squares) 3 Hai loại mô hình sẽ được trình bày ở chương 15 là Logit và Probit 4 Missing value 2

34. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 34 Các lựa chọn ước lượng Khi chọn Options ta sẽ thấy xuất hiện hộp thoại Equation Estimation. Các nội dung trong phần lựa chọn ước lượng như Heteroskedastiscity consistent coefficient covariance và Weighted LS/TSLS sẽ được trình bày chi tiết ở chương 11 và 12. Kết quả ước lượng Sau khi đã hoàn thành các bước trên ta chọn OK trong hộp thoại Equation Estimation, Eviews sẽ hiển thị cửa số phương trình về hiển thị kết quả ước lượng. Trong kết quả ước lượng của Eviews gồm ba phần chính: Tóm tắt các đặc điểm của mô hình hồi qui (biến phụ thuộc, phương pháp ước lượng, thời điểm thực hiện ước lượng, mẫu ước lượng, và số quan sát được sử dụng cho ước lượng kết quả); Kết quả hệ số (tên các biến giải thích, giá trị ước lượng các hệ số hồi qui, sai số chuẩn, thống kê t, và giá trị xác suất); và Tóm tắt thống kê (hệ số xác định R2, R2 điều chỉnh, sai số chuẩn của hồi qui, tổng bình phương phần dư (RSS), thống kê d Durbin-Watson, AIC, SIC, thống kê F, …). Sau khi học xong chương trình kinh tế lượng căn bản ít nhất ta sẽ hiểu một cách hệ thống tất cả các thông tin trong bảng kết quả ước lượng này.

36. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 36 ta nên lưu phần dư với một tên gọi khác. Khi vừa ước lượng mô hình, nếu ta chọn Resids ở Equation ta sẽ có đồ thị hệ trục kép như sau: 2000 1500 1000 30 500 20 10 0 0 -10 -20 -30 55 60 65 70 Residual 75 80 Actual 85 90 95 Fitted Biến giả trong Eviews Để đưa biến giả vào mô hình hồi qui, thay vì phải tạo ra các biến này, Eviews đưa ra công thức hỗ trợ rất hữu ích như sau: @EXPAND(D1, D2, …) (2.23) Ví dụ sử dụng chúng tôi hồi qui biến wage theo các biến giáo dục, năm kinh nghiệm, giới thích, ngành xây dựng, và ngành dịch vụ như sau:

39. 39 Hướng dẫn sử dụng Eviews 5.1 Phùng Thanh Bình Tổng các hệ số hồi qui của log(K) và log(L) dường như lớn hơn 1, nhưng để có kết luận tin cậy ta cần kiểm định giả thiết H0: β2 + β3 = 1. Để thực hiện kiểm định Wald ta chọn View/Coefficient Tests/Wald – Coefficient Restrictions … và nhập điều kiện ràng buộc vào hộp thoại soạn thảo như sau: Lứu ý, nếu có nhiều ràng buộc khác nhau, thì mỗi ràng buộc cách nhau bằng một dấu phẩy. Eviews sẽ cho kết quả kiểm định như sau: Các giá trị thống kê sẽ được giải thích ở chương mô hình hồi qui bội. Ngoài ra, ta có thể đưa ra các điều kiện ràng buộc khác tùy vào phát biểu giả thiết. Để quyết định bác bỏ hay chấp nhận H0, nếu là mô hình hồi qui tuyến tính ta so sánh giá trị F tính toán với giá trị F phê phán ở một mức ý nghĩa xác định. Ngược lại, nếu mô hình hồi qui phi tuyến ta so sánh giá trị chi bình phương tính toán với giá trị chi bình phương phê phán với số bậc tự do bằng số ràng buộc. * Kiểm định bỏ sót biến Đây là một nội dung quan trọng trong kiểm định sai dạng mô hình. Ý tưởng của kiểm định này là khi ta đưa thêm biến vào mô hình và muốn biết các biến này có đóng góp có ý nghĩa vào việc giải thích sự thay đổi của biến phụ thuộc hay không. Giả thiết không của kiểm định này là các biến mới đưa thêm vào mô hình đồng thời không có ý nghĩa. Giả sử, với chúng tôi lúc đầu ta chỉ ước lượng mô hình như sau: log(GDPt) = B1 + B2log(M1t) + B3log(RSt) + ut Hai điểm lưu ý với kiểm định này: (2.27)

40. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 40 – Số quan sát trong hai mô hình phải bằng nhau. – Áp dụng cho mọi phương pháp ước lượng miễn là phương trình hồi qui được xác định bằng cách liệt kê các biến chứ không phải bằng công thức. Để thực hiện kiểm định bỏ sót biết ta chọn View/Coefficient Tests/Omitted Variables – Likelihood Ratio … và nhập tên các biến nghi là bị bỏ sót cần được kiểm định (giả sử đó là TIME và PR) vào hộp thoại soạn thảo và được kết quả sau đây: Để quyết định bác bỏ hay chấp nhận H0, nếu là mô hình hồi qui tuyến tính ta so sánh giá trị F tính toán với giá trị F phê phán ở một mức ý nghĩa xác định. Ngược lại, nếu mô hình hồi qui phi tuyến ta so sánh giá trị LR với giá trị chi bình phương phê phán với số bậc tự do bằng số ràng buộc. * Kiểm định thừa biến Đây cũng là một nội dung trong kiểm định sai dạng mô hình. Kiểm định này cho phép ta kiểm định xem một nhóm biến đưa vào mô hình có ý nghĩa thống kê hay không. Nói cách khác, đây là kiểm định xem các hệ số của một nhóm biến đưa vào mô hình có đồng thời bằng không hay không để quyết định có nên loại chúng ra khỏi mô hình hay không. Các điều kiện áp dụng kiểm định này cũng tương tự như kiểm định bỏ sót biến. Giả sử lúc đầu ta có mô hình như sau: log(GDPt) = B1 + B2log(M1t) + B3log(RSt) + B4PRt + B5TIME + ut (2.28)

42. CHƯƠNG 2: HƯỚNG DẪN SỬ DỤNG EVIEWS 42 tương quan và thống kê Q để kiểm định “chuỗi” phần dư của mô hình hồi qui có tương quan với nhau không. Biểu đồ tự tương quan đã được trình bày ở phần xử lý dữ liệu chuỗi. Để thực hiện kiểm định phần dư có tự tương quan hay không ta chọn View/Residual Tests/Correlogram – Q Statistics … * Kiểm định nhân tử Lagrange Đây là một cách kiểm định khác với kiểm định Q để kiểm định tương quan chuỗi. Kiểm định này sẽ được trình bày ở chương 13 về lựa chọn dạng mô hình. Trên Eviews ta thực hiệm kiểm định này bằng cách chọn Views/Residual Tests/Serial Correlation LM Test … * Kiểm định White về phương sai thay đổi Tương tự, mô hình hồi qui tuyến tính cổ điển cũng giả định các hạn nhiễu có phương sai đồng nhất. Để xem phương sai của nhiễu có đồng nhất hay không ta có thể sử dụng các kiểm định Park, kiểm định Glejser, kiểm định White, … Nội dung các kiểm định này sẽ được trình bày ở chương 11 về phương sai thay đổi. Trên Eviews ta thực hiện kiểm định White bằng cách chọn hoặc View/Residual Tests/White Heteroskedasticity (no cross terms) hoặc View/Residual Tests/White Heteroskedasticity (cross terms). Kiểm định sự ổn định * Kiểm định Chow Mục đích của kiểm định Chow là xem liệu có sự thay đổi về mặt cấu trúc của mô hình hồi qui (đối với hồi qui chuỗi thời gian) giữa các giai đoạn khác nhau (do thay đổi chính sách hoặc cú sốc kinh tế) hay không. Nội dung của kiểm định này sẽ được trình bày ở chương 8 về phân tích hồi qui bội. Ta xét ví dụ trong chúng tôi Sau khi ta hồi qui tiết kiệm theo thu nhập và thực hiện kiểm định như sau View/Stability Tests/Chow Breakpoint Test … và ta nhập mốc thời gian vào hộp thoại soạn thảo để có kết quả như sau: . * Kiểm định RESET của Ramsay Mục đích của kiểm định này là xem có bỏ sót biến quan trọng trong mô hình hồi qui hay không (nhất là khi không có số liệu về biến bỏ sót đó). Nội dung của kiểm định này sẽ được trình bày ở chương 8 về lựa chọn dạng mô hình. Sau khi ước lượng, để kiểm định xem liệu mô hình có sót biến hay không ta chọn View/Stability Tests/Ramsay RESET Test …

Cách Up Rom 4.4 Cho Asus Zenfone Phiên Bản Mới Nhất / 2023

Hướng dẫn up rom 4.4 Kitkat cho Asus Zenfone

Android 4.4 KitKat đã có mặt trong làng điện máy được 5 tháng và hiện nay đã được cài sẵn trên nhiều thiết bị chạy Android mới trên thị trường. Đầu tháng 10, Asus cũng như nhiều hãng khác đã cho phép người dùng có thể nâng cấp lên những phiên bản mới để người dùng có thể thỏa sức trải nghiệm những tính năng hữu ích mà Android 4.4 có thể mang lại. Bài viết này sẽ hướng dẫn cách up rom 4.4 cho Asus Zenfone, dòng máy hot nhất của Asus trên thị trường hiện nay.

Những tính năng mới trên Android KitKat 4.4 mà bạn nên biết trước khi nâng cấp cho điện thoại của mình. Đây được coi là phiên bản hay ho nhất từ trước đến nay và nó được thiết kế cho tất cả các thiết bị thông minh chạy trên nền Android có RAM từ 512Mb trở lên. Một số tính năng hay cho máy Asus Zenfone 2 lên Android 4.4  Kitkat:

+ Ẩn thanh công cụ, tạo thêm không gian màn hình cho máy , hiệu ứng chuyển cảnh màn hình, tạo hiệu ứng trên màn hình thay đổi kích thước ảnh nền và các ảnh ảnh động.

+ Quay lại màn hình Screen Cast, nhờ vậy mà nếu cần hướng dẫn các bước thực hiện hay ghi chép lại các bước thao tác trên điện thoại đều có thể thực hiện dễ dàng nhờ chức năng này.

+ Sắp xếp thư mục và kết nối file tốt hơn, đặc biệt hữu ích cho người dùng công sở hoặc những người thường xuyên cần sử dụng đến trình quản lý file

+ Chế độ Immersive ẩn thanh trạng thái và hiện ra bất cứ khi nào bạn cần với một cái chạm, đó chính là ứng dụng của chế dộ fullscreen tự động.

Hiện tại trên nhiều diễn đàn bạn có thể tìm thấy các bài viết hướng dẫn up các bản rom World cho máy Zenfone, một số trang sử dụng các thông tin cũ có thể sẽ khiến bạn cài nhầm các bản được xuất bản cho Trung Quốc, hoặc là các bản rom cook tức đã được tự chỉnh sửa, không còn nguyên bản. Với những cách này thường yêu cầu phải Root máy.

Cách 1 thông qua OTA( over-the-air). Với cách này tất cả những gì bạn cần là một mạng không dây khỏe và ổn định cùng với điện thoại đã sạc đầy pin. Vào theo đường dẫn sau : Settings/ About/ System update/ Check Update : chọn đồng ý và cập nhật phiên bản mới. Quá trình này có thể hơi mất thời gian một chút.

Cách hai với những nới không có sóng wifi ổn định bạn hãy tải về bản rom quốc tế trên trang chính thức của Asus: chúng tôi Tại địa chỉ này đánh vào mục tìm kiếm chiếc điện thoại của bạn.

==: Khuyên mãi giá tốt Huawei Honor 4C điện thoại 8 nhân giá rẻ đáng mua

Cài đặt xong máy sẽ tự khởi động lại, bạn đã hoàn tất việc up rom 4.4 cho Asus Zenfone rồi. Bạn sẽ luôn được cập nhật những tính năng mới nhất cho máy. Với những máy đã root, làm theo cách 2 nhưng thay các file tải về từ trang của Asus bạn có thể tải các bản rom cook khác trên các diễn đàn với những chỉnh sửa theo ý thích người dùng. Tuy rằng cũng không nên lạm dụng các bản rom này do nó hay có lỗi.